Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors
نویسندگان
چکیده
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3'-5' exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3'-single-stranded arm. The stimulatory effect of MutSalpha on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLalpha protein known to bind to the MutS alpha-heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSalpha, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.
منابع مشابه
Functional and physical interaction between WRN helicase and human replication protein A.
The human premature aging disorder Werner syndrome (WS) is associated with a large number of symptoms displayed in normal aging. The WRN gene product, a DNA helicase, has been previously shown to unwind short DNA duplexes (</=53 base pairs) in a reaction stimulated by single-stranded DNA-binding proteins. We have studied the helicase activity of purified WRN protein on a variety of DNA duplex s...
متن کاملMismatch repair in extracts of Werner syndrome cell lines.
Werner syndrome (WS) is an autosomal recessive disease, the phenotype of which is a caricature of premature aging. WS cells and cell lines display several types of genetic instability, and WS patients have an increased risk of developing cancer. The WS locus (WRN) encodes a protein that shows significant sequence homology to the RecQ family of DNA helicases. Because a DNA helicase may function ...
متن کاملThe Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links.
DNA interstrand cross-links (ICLs) are perhaps the most formidable lesion encountered by the cellular DNA repair machinery, and the elucidation of the process by which they are removed in eukaryotic cells has proved a daunting task. In particular, the early stages of adduct recognition and uncoupling of the cross-link have remained elusive principally because genetic studies have not been highl...
متن کاملProtein Degradation Pathways Regulate the Functions of Helicases in the DNA Damage Response and Maintenance of Genomic Stability
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom's syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the F...
متن کاملDNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities
Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-w...
متن کامل